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We have previously discussed the classical diffusive system of the bounded one-
dimensional multitrap using the transfer matrix method which is generally applied
for studying the energy spectrum of the unbounded quantum Kronig–Penney multibar-
rier. It was shown, by this method, that for certain values of the relevant parameters
the bounded multitrap array have unity transmission and a double-peak phase transi-
tional behavior. We discuss in this work, using the same transfer matrix method, the
energy related to the diffusion through the unbounded one-dimensional multitrap and
find that it may be expressed in two entirely different ways with different results and
consequences. Also, it is shown that, unlike the barriers in the Kronig–Penney case, the
energies at one face of the imperfect trap greatly differ from the energies at the other
face of the same trap.
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1. INTRODUCTION

The remarkable similarity (Roepstorff, 1994; Mattis and Glasser, 1998) be-
tween the Schroedinger and the classical diffusion equations have attracted many
authors to discuss diffusion limited reactions using quantum methods and ter-
minology (see annotated bibliography in Mattis and Glasser (1998)). For exam-
ple, the same methods and terminology of transfer matrices (Merzbacher, 1961;
Tannoudji, 1977; Yu, 1990), which are applied (Merzbacher, 1961; Tannoudji,
1977) for discussing quantum multibarrier potentials, have been used (Bar, 2001,
2004) for discussing the one-dimensional bounded imperfect multitrap system
(Smoluchowski, 1917; Noyes, 1954; Weiss et al., 1989; Nieuwenhuize and Brandt,
1990; Giacometti and Nakanishi, 1994; Abramson and Wio, 1995; Torquato and
Yeong, 1997; Ben-Avraham and Havlin, 2000) through which classical particles
diffuse.
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The imperfect trap, which was introduced in Collins and Kimball (1949) and
further discussed by others (Taitelbaum et al., 1990; Taitelbaum, 1991; Condat
et al., 1995; Re and Budde, 2000), may serve as a model for many physical
situations. For example, one may find applications of it to rotational diffusion
in chemical reactions (Chuang and Eisenthal, 1975) or to proteins with active
sites deep inside the protein matrix (Nadler and Stein, 1996) or to infinite lattice
traversed by a random walker in the presence of an imperfect trap (Re and Budde,
2000). We note that the discussion of the bounded one-dimensional multitrap
systems have resulted, for certain values of its parameters (Bar, 2001, 2004), in
finding somewhat unconventional results. Among these one may count a unity
transmission of the density of the diffusing particles through the multitrap array
(Bar, 2001, 2003) or the double-peak phase transition recently found (Bar, 2004)
in such systems.

An important aspect of the classical one-dimensional multitrap system, which
was not fully discussed thus far, is when its length tends to infinity. The analogous
quantum infinite multibarrier, which is the Kronig–Penney system (Merzbacher,
1961; Tannoudji et al., 1977; Kittel, 1986), have been extensively discussed in
the literature by many authors and it is known by its famous band-gap energy
spectrum (Merzbacher, 1961; Kittel, 1986) which is widely applied in electronics,
semiconductors and solid state physics (Ashcroft et al., 1976).

We discuss here the problem of a very large (infinite) one-dimensional mul-
titrap system using the same transfer matrix method which were applied for
studying the Kronig–Penney multibarrier potential (Merzbacher, 1961; Tannoudji
et al., 1977; Kittel, 1986). We, especially, discuss the energy of the diffusing par-
ticles and apply similar methods as those used for studying the enegy spectrum of
the quantum Kronig–Penney multibarrier (Ashcroft et al., 1976; Kittel, 1986).

By using the transfer matrix method for the unbounded classical multitrap
system, we obtain a quadratic characteristic equation, the two solutions of which
give rise to two possible expressions for the energy of the diffusing particles. Each
of these two energies has a part which is associated with the left-hand face of the
trap and another, differently expressed, part related to the right-hand face of it.
The different expressions of each of the two energies at the left- and right-hand
sides of the trap causes these energies to greatly differ in value at these faces.
That is, we show that by merely diffusing through the trap the particles energy
enormously changes. All the analytical results are graphically corroborated.

We note that the energies of the bounded one-dimensional multitrap system
were found in Bar (2004) to have phase transitional characteristics for the case in
which an external field was appended to the system.

In Section 2, we apply the transfer matrix method for introducing and dis-
cussing the unbounded one-dimensional multitrap system as done in Bar (2001,
2003, 2004). Note that by using the transfer matrix formalism we also use its
terminology which usually refers to an N -array system (Tannoudji et al., 1977)
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rather than to an infinite array one. We remove this finiteness by letting the num-
ber of traps N and the total length L of the multitrap to become very large. In
the numerical part, we assign to N and L the values of 15,000 and 20,000 (note
that in Tannoudji (1977) a finite multibarrier potential composed of a few hun-
dred barriers was used as a model for the infinite Kronig–Penney system). In
Section 3, we discuss the energy associated with the diffusing particles and find,
using Appendices A and B, the appropriate expressions for it. In Section 4, we
calculate the energy for some specific values of its parameters. In Section 5, we
use the analytical results of Sections 3 and 4, and those of the Appendices A–B
for graphically showing the energies as functions of its variables. We show that
these variables have certain values at which the corresponding energy becomes
disallowed such as, for example, when it tends to become negative or to assume
very much large positive values. Some analytical expressions and derivations are
shown in Appendices A–B. We conclude with a brief summary.

2. APPLICATION OF THE TRANSFER MATRIX METHOD FOR THE
UNBOUNDED ONE-DIMENSIONAL MULTITRAP SYSTEM

The one-dimensional imperfect multitrap system is assumed to be arranged
along the whole positive x axis and the diffusing particles which pass through it
are supposed to come from the negative side of it. We denote, as in Bar (2001,
2004), the total width of all the traps and the total interval among them by a and
b, respectively where a and b tend to become very much large. The ratio of b to a

and the total length a + b of the system are denoted by c and L, respectively. As
in Bar (2001, 2004), we may express a and b by c and L as a = L

(1+c) , b = Lc
(1+c) .

The period of the multibarrier system which is L
N

is denoted by p. We assume that
the multitrap system begins at the point x = b

N
= pc

(1+c) .
The initial and boundary value problem (Dennemeyer, 1968) which is appro-

priate for describing the diffusion through the N imperfect barriers is (Bar, 2001,
2004)

(1) ρt (x, t) = Dρxx(x, t), t > 0, 0 < x ≤ (a + b)

(2) ρ(x, 0) = ρ0 + f (x), 0 < x ≤ (a + b) (1)

(3) ρ(xi, t) = 1

k

dρ(x, t)

dx
|x=xi

, t > 0, 1 ≤ i ≤ 2N,

where ρ(x, t), ρt (x, t) and ρxx(x, t) denote respectively the density of the diffusion
particles, its first partial derivative with respect to the time t and its second partial
derivative with respect to x. The dissusion constant D is supposed to have two
different values; Di inside the traps and De outside them where De > Di (Bar,
2001, 2004). The value of 0.5 cm2/sec is the order of magnitude of the diffusion
constant at room temperature and atmospheric pressure (p. 337 in Reif (1965)). In
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the numerical part here, we have assigned to De and Di the respective values of 0.8
cm2/sec and 0.4 cm2/sec. The second equation of the set (1) is the initial condition
which is assumed (Bar, 2001, 2004) to depend on x through f (x) and on the
constant term ρ0. The third equation of the set (1) is the boundary value condition
at the location of the traps where each trap has a finite width. That is, any trap
is characterized by the two points along the x axis where its left- and right-hand
faces are located. The constant k is the trapping rate (or the imperfection constant)
which characterizes the degree of imperfection of the traps where the ideal trap
condition is obtained when k → ∞. The set (1) may be decomposed into two
separate problems as follows (Bar, 2001, 2004)

(1) ρt (x, t) = Dρxx, t > 0, 0 < x ≤ (a + b)

(2) ρ(x, 0) = ρ0, 0 < x ≤ (a + b) (2)

(3) ρ(xi, t) = 1

k

dρ(x, t)

dx
|x=xi

, t > 0, 1 ≤ i ≤ 2N

(1) ρt (x, t) = Dρxx(x, t), t > 0, 0 < x ≤ (a + b)

(2) ρ(x, 0) = f (x), 0 < x ≤ (a + b) (3)

(3) ρ(xi, t) = 0, t > 0, 1 ≤ i ≤ 2N

The sets (2) and (3) represent the diffusion through N imperfect and N

ideal traps, respectively, as may be realized from the third equations of these sets.
Following Dennemeyer (1968), one may write the general solution of the set (1)
as (Bar, 2001, 2004)

ρ(x, t) = Aρ1(x, t) + Bρ2(x, t), (4)

where ρ1(x, t) and ρ2(x, t) are the solutions of the problems (2) and (3), respec-
tively. Using the method of separating variables (Dennemeyer, 1968) one may find
the ideal trap solution (Bar, 2001, 2004) as

ρ2(x, t) = sin

(
πx

xi

)
e
−

(
tDπ2

x2
i

)
, 1 ≤ i ≤ 2N (5)

The solution ρ1(x, t) of the imperfect trap problem is given by Ben-Avraham and
Halvin (2000); Bar (2001, 2003, 2004)

ρ1(x, t) = ρ0

(
erf

(
(x − x̀i)

2
√

Dt

)
+ exp(k2Dt + k(x − x̀i))

× erf c

(
k
√

Dt + (x − x̀i)

2
√

Dt

)
, 1 ≤ i ≤ 2N (6)

where the erf (x) and erf c(x) are the error and complementary error func-
tions given by erf (x) = ∫ x

0 e−u2
du and erf c(x) = 1 − erf (x) = ∫ ∞

x
e−u2

du,
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respectively. The x̀i denote the 2N faces of the N traps. Using the transfer ma-
trix method, as done in Merzbacher (1961), Tannoudji (1977) with respect to the
Kronig–Penney potential and in Bar (2001, 2004) with regard to the bounded mul-
titrap system, one may write the following equation which relates the two faces
of the j th trap

(
A2j+1

B2j+1

)
=


T11

(
x̀ left

j , x̀
right
j

)
T12

(
x̀ left

j , x̀
right
j

)
T21

(
x̀ left

j , x̀
right
j

)
T22

(
x̀ left

j , x̀
right
j

)

 (

A2(j−1)+1

B2(j−1)+1

)
, 1 ≤ j ≤ N

(7)
A2j+1 and B2j+1 are the imperfect and ideal trap coefficients of the j th trap
and A2(j−1)+1 and B2(j−1)+1 are those of the (j − 1) trap, respectively. The two-
dimensional matrix T (j ) at the right-hand side of Eq. (7) relates the left-hand face
of the j th trap at x̀ left

j to its right-hand face at x̀
right
j where x̀

right
j > x̀ left

j . The matrix
elements T11, T12, T21 and T22 are derived in details in Bar (2001, 2003, 2004) and
are given in Appendix A.

For a one-dimensional N trap system, which begins at the point x = b
N

=
pc

(1+c) and has a period p one obtains the general transfer matrix equation (Bar,
2001, 2003, 2004)(

A2N+1

B2N+1

)
= T (N)

(
p

(
N − 1

(1 + c)

)
, pN

)
T (N−1)

(
p

(
N − (2 + c)

(1 + c)

)
, p(N − 1

)
,

. . . T (2)

(
p

(
1 + c

(1 + c)

)
, 2p

)
T (1)

(
pc

(1 + c)
, p

)(
A1

B1

)
(8)

Each two-dimensional matrix at the right-hand side of the last equation is denoted
in its parentheses by the locations of the left- and right-hand faces of its corre-
sponding trap. Thus, one may realize, for example, that for an array which begins,
as remarked, at the point x = b

N
= pc

(1+c) the locations of the left-hand side faces

of the N th trap are x left
N = p(N − 1

(1+c) ) and x
right
N = pN and those of the first trap

are x left
1 = b

N
= pc

(1+c) and x
right
1 = a+b

N
= p. Note that, as remarked in Bar (2001,

2003, 2004), all the two-dimensinal matrices at the right-hand side of Eq. (8) have
the same values for D, t , L and c and differ by only the values of x along the
positive spatial axis. Performing the N products at the right-hand side of Eq. (8)
one may obtains an overall two-dimensional matrix, denoted TN , whose elements
TN11 , TN12 , TN21 and TN22 may be recursively expressed by

TN11 = T(N−1)11T11

(
p

(
N − 1

(1 + c)

)
, Np

)
= . . . =

j=N∏
j=1

T11

(
p

(
j − 1

(1 + c)

)
, jp

)

TN12 = T(N−1)12 = . . . = T212 = T112 = T12 = 0 (9)

TN21 = T(N−1)21T22

(
p

(
N − 1

(1 + c)

)
, Np

)
+ T(N−1)11T21

(
p

(
N − 1

(1 + c)

)
, Np

)
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TN22 = T(N−1)22T22

(
p

(
N − 1

(1 + c)

)
, Np

)
= . . . =

j=N∏
j=1

T22

(
p

(
j − 1

(1 + c)

)
, jp

)

Note that, whereas TN11 and TN22 are each a one-term expression which is con-
structed from N products, the element TN21 is an N -term expression and each of
them is composed of N products. Now, using (A.2) in Appendix A (see also the
second equation of Eqs. (9)) one may calculate the trace T r and the determinant
Det of the two-dimensional matrix T (j ) at the right-hand side of Eq. (7)

T r
(
T (j )

) = T11
(
x̀ left

j , x̀
right
j

) + T22
(
x̀ left

j , x̀
right
j

)
= T11

(
p

(
j − 1

(1 + c)

)
, pj

)
+ T22

(
p

(
j − 1

(1 + c)

)
, pj

)

Det
(
T (j )

) = T11
(
x̀ left

j , x̀
right
j

) · T22
(
x̀ left

j , x̀
right
j

)
= T11

(
p

(
j − 1

(1 + c)

)
, pj

)
· T22

(
p

(
j − 1

(1 + c)

)
, pj

)
(10)

Using Eq. (10), and following the analogous Kronig–Penney case (Merzbacher,
1961; Tannoudji et al., 1977; Kittel, 1986) one may write the following quadratic
characteristic equation of T (j )

y2 − y · T r
(
T (j )

) + Det
(
T (j )

) = y2 − y ·
(

T11

(
p

(
j − 1

(1 + c)

)
, pj

)

+ T22

(
p

(
j − 1

(1 + c)

)
, pj

))
+ T11

(
p

(
j − 1

(1 + c)

)
, pj

)
(11)

·T22

(
p

(
j − 1

(1 + c)

)
, pj

)
= 0

The two roots y
(j )
+ and y

(j )
− of the last equation which are the required eigenvalues

of T (j ) are

y
(j )
+ = T11

(
p

(
j − 1

(1 + c)

)
, pj

)
, y

(j )
− = T22

(
p

(
j − 1

(1 + c)

)
, pj

)
(12)

Now, if the two roots y
(j )
+ , y

(j )
− , 1 ≤ j ≤ N are different as for the case here (see

(A.1) and (A.4) in Appendix A), the two eigenvectors which correspond to them
are linearly independent and we may identify, as for the corresponding quantum

Kronig–Penney system (Merzbacher, 1961), the initial values (
A1

B1
) from Eq. (8)
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with the following two eigenvectors

T (1)

(
A+

1

B+
1

)
= y

(1)
+

(
A+

1

B+
1

)
= T11

(
pc

(1 + c)
, p

) (
A+

1

B+
1

)

T (1)

(
A−

1

B−
1

)
= y

(1)
−

(
A−

1

B−
1

)
= T22

(
pc

(1 + c)
, p

) (
A−

1

B−
1

)
, (13)

where T (1) at the left-hand sides of (13) is the two-dimensional matrix from the
right-hand side of Eq. (7) for j = 1 and pc

(1+c) and p at the right-hand sides of
Eq. (13) are, as mentioned, the respective locations of the left and right-hand sides
of the first trap. For these y

(1)
± one may identify, as for the Kronig–Penney case

(Merzbacher, 1961; Tannoudji, 1977), the coefficients
(A2N+1

B2N+1

)
in (8) with the

two eigenvectors (
A+

2N+1
B+

2N+1

)
= (y(1)

+ )N
(

A+
1

B+
1

)
(

A−
2N+1

B−
2N+1

)
= (y(1)

− )N
(

A−
1

B−
1

)
(14)

From Eqs. (A.1), (A.4), (A.5) and (A.7) in Appendix A and from realizing that the
variables x̀i assume either the value of x̀ left

j or x̀
right
j (see, for example, the following

discussion before Eq. (31)) one may see that the quantities y
(j )
+ , 1 ≤ j ≤ N are

identical and satisfy y
(1)
+ = y

(2)
+ = . . . = y

(N)
+ . The other quantities y

(j )
− , 1 ≤ j ≤

N can be seen to slightly differ from each other and one may approximately write
y

(1)
− ≈ y

(2)
− ≈ . . . ≈ y

(N)
− .

Considering the limit of an infinite multitrap array which is arranged along
the whole positive x axis, we should demand, as for the Kronig–Penney case
(Merzbacher, 1961; Tannoudji, 1977), that as the number of barriers N tend to ∞
the right-hand sides of Eq. (14) should not diverge. That is, we require

∣∣y(1)
+

∣∣ =
∣∣∣∣T11

(
pc

(1 + c)
, p

)∣∣∣∣ ≤ 1 (15)

∣∣y(1)
−

∣∣ =
∣∣∣∣T22

(
pc

(1 + c)
, p

)∣∣∣∣ ≤ 1.

Substituting in the last inequalities for T11 and T22 from Eqs. (A.1) and (A.4) of
Appendix A, one obtains∣∣∣∣∣

α(De,
pc

(1+c) , t)α(Di, p, t)

α(Di,
pc

(1+c) , t)α(De, p, t)

∣∣∣∣∣ ≤ 1 (16)
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∣∣∣∣∣
η(De,

pc

(1+c) , t)η(Di, p, t)

η(Di,
pc

(1+c) , t)η(De, p, t)

∣∣∣∣∣ ≤ 1, (17)

where α and η are given respectively by Eq. (A.5) and (A.7) in Appendix A.

3. THE ENERGY OF THE DIFFUSING PARTICLES
IN THE ONE-DIMENSIONAL MULTITRAP SYSTEM

In order to reduce the inequalities in Eqs. (16) and (17) to calculable expres-
sions, we express the parameters α and η, which were given by Eqs. (A.5) and
(A.7) in Appendix A, in terms of the energy E of the diffusing particles. We use
for that matter the relevant expressions of the energy which were fully derived and
discussed in Bar (2004) for the multitrap system. Thus, using Eqs. (4)–(6), we can
write the energy E as

E(D, x, x̀i , t) = 1

2
ρv2 = (ρ(D, x, x̀i , t))

D

t

= (A(x,D)α(D, x, x̀i , t) + B(x,D)ρ2(D, x, x̀i , t)) · D

t

=
(

A(x,D)

(
erf

(x − x̀i)

2
√

Dt

)
+ exp(k2Dt + k(x − x̀i))erf c

×
(

k
√

Dt + (x − x̀i)

2
√

Dt

)
+ B(x,D) sin

(
πx

x̀i

)

exp

(
−Dtπ2

x̀2
i

))
· D

t
, i = 1, 2, . . . 2N, t > 0, (18)

where v is the average diffusion velocity v =
√

2D
t

which is derived from the
classical one-dimensional diffusion equation for any finite t (see, for exam-
ple p. 91 in Varbin and Sela (1992)). The variables x̀i denote the locations on
the x axis of the 2N faces of the N traps (see the solutions in Eqs. (5) and
(6) of the respective ideal and imperfect trap problems (3) and (2)). The im-
perfect and ideal trap coefficients A(x,D) and B(x,D) are numerically found
for the 2N faces of the N traps x = x̀j , j = 1, 2, . . . 2N (Bar, 2001, 2004).
That is, for each j th trap, one may find, using the transfer matrix method,
the four pairs (1) A(x̀ left

j ,Di), B(x̀ left
j ,Di), (2) A(x̀right

j ,Di), B(x̀right
j ,Di), (3)

A(x̀ left
j ,De), B(x̀ left

j ,De), and (4) A(x̀right
j ,De), B(x̀right

j ,De). The first pair de-
notes the ideal and imperfect trap coefficients inside the j th trap at its left-
hand face. The second pair denotes these coefficients inside the j th trap at its
right-hand face. The third and fourth pairs denote these coefficients outside the
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j th trap at its left- and right-hand faces. Note that these coefficients, as well
as the variables x̀ left

j and x̀
right
j , are not independent of each other. First, one

may realize (see the discussion after Eq. (8)) that x̀ left
j and x̀

right
j are given by

x̀ left
j = p(j − 1

(1+c) ), x̀
right
j = pj, 1 ≤ j ≤ N so that they are related by

x̀ left
j = x̀

right
j − p

(1 + c)
, 1 ≤ j ≤ N (19)

Second, the transfer matrix method relates the former coefficients of the j th trap
among themselves and also with those of the (j + 1)th trap as (Bar, 2001, 2003)

A
(
x̀ left

j ,Di

) = A
(
x̀

right
j ,Di

)
, A

(
x̀

right
j ,De

) = A
(
x̀ left

(j+1),De

)
B

(
x̀ left

j ,Di

) = B
(
x̀

right
j ,Di

)
, B

(
x̀

right
j ,De

) = B
(
x̀ left

(j+1),De

)
(20)

As one may realize, the x̀i from Eq. (18) does not have to coincide with x̀j . That
is, although for the same j th trap each of x̀j and x̀i denote its two faces, x̀j may,
for a specific context, refers to its left-hand face in which case it is written as x̀ left

j

whereas x̀i may refers in this context to its right-hand face and is written as x̀
right
j .

Now, analogously to the Kronig–Penney case (Merzbacher, 1961; Tannoudji
et al., 1977; Kittel, 1986), one may turn the inequalities at the right-hand sides of
(16) and (17) to equalities. In such case, the left-hand sides of (16) and (17) are
equated to cos(κp) where κ is a real parameter and p is the period of the multitrap
which is p = L

N
. In accordance with the analogous procedure of the Kronig–

Penney case (Merzbacher, 1961; Tannoudji et al., 1977; Kittel, 1986), the two
eigenvalues of the characteristic equation are related to the same parameter. Note
that even if one relates the two eigenvalues to different parameters he will obtain
the same following expressions (31)–(34) for the energies each of which depends
on only one parameter.

We use in the following the transfer matrix principal property in which
the density (and its derivative) at the two sides of any face of each trap are
equal (Merzbacher, 1961; Tannoudji et al., 1977; Bar, 2001; 2003). This may be
expressed, for example, for the left-hand face of the j th trap as

ρ
(
De, x̀

left
j , x̀i , t

)
= A

(
x̀ left

j , De
)
α
(
De, x̀

left
j , x̀i , t

)
+ B

(
x̀ left

j , De

)
ρ2

(
De, x̀

left
j , x̀i , t

)
= ρ

(
Di, x̀

left
j , x̀i , t

)
= A

(
x̀ left

j ,Di

)
α
(
Di, x̀

left
j , x̀i , t

)
+ B

(
x̀ left

j , Di

)
ρ2

(
Di, x̀

left
j , x̀i , t

)
(21)

Substituting from Eqs. (18) for the α’s in (16) and from Eq. (5), (18), and (A.7)
for the η’s in (17), one obtains after equating the left-hand sides of (16) and (17)
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to cos(κp) (see the discussion after Eq. (20))(
E(De,

pc

(1+c) ,x̀i ,t)t

A
(

pc

(1+c) ,De

)
De

− B
(

pc

(1+c) ,De

)
ρ2(De,

pc

(1+c) ,x̀i ,t)

A
(

pc

(1+c) ,De

)
)

·
(

E(Di,p,x̀i ,t)t
A(p,Di )Di

− B(p,Di )ρ2(Di,p,x̀i ,t)
A(p,Di )

)
(

E(Di,
pc

(1+c) ,x̀i ,t)t

A
(

pc

(1+c) ,Di

)
Di

− B
(

pc

(1+c) ,Di

)
ρ2(Di,

pc

(1+c) ,x̀i ,t)

A
(

pc

(1+c) ,Di

)
)

·
(

E(De,p,x̀i ,t)t
A(p,De)De

− B(p,De)ρ2(De,p,x̀i ,t)
A(p,De)

)
= cos(κp) (22)

(
E(De,

pc

(1+c) ,x̀i ,t)t

B
(

pc

(1+c) ,De

)
De

− A
(

pc

(1+c) ,De

)
α(De,

pc

(1+c) ,x̀i ,t)

B
(

pc

(1+c) ,De

)
)

·
(

E(Di,p,x̀i ,t)t
B(p,Di )Di

− A(p,Di )α(Di,p,x̀i ,t)
B(p,Di )

)
(

E(Di,
pc

(1+c) ,x̀i ,t)t

B
(

pc

(1+c) ,Di

)
Di

− A
(

pc

(1+c) ,Di

)
α(Di,

pc

(1+c) ,x̀i ,t)

B
(

pc

(1+c) ,Di

)
)

·
(

E(De,p,x̀i ,t)t
B(p,De)De

− A(p,De)α(De,p,x̀i ,t)
B(p,De)

)
= cos(κp) (23)

The functions ρ2 and α are given by Eqs. (5) and (A.5), respectively in Appendix A

and use is made of the relation ρ2(D, x, x̀i , t) = − x̀i

π
η(D, x̀i, t) sin

(
πx
x̀i

)
obtained

by comparing Eq. (5) with (A.7) in Appendix A. The sine function and the factor
x̀i

π
which do not depend on the diffusion constants Di and De are cancelled in

Eq. (23). As realized from the last equations there are four energies related to the
trap; E(De,

pc

(1+c) , x̀i , t), E(De, p, x̀i , t), E(Di,
pc

(1+c) , x̀i , t), and E(Di, p, x̀i , t).
But, as seen, one may reduce the number of the energies related to each trap to
two since using Eq. (18) and (21) one may obtain the following expressions which
relate the energies at the two sides of each trap

E
(
De, x̀

left
j , x̀i , t

) t

De

= E
(
Di, x̀

left
j , x̀i , t

) t

Di

, 1 ≤ j ≤ N

E
(
De, x̀

right
j , x̀i , t

) t

De

= E
(
Di, x̀

right
j , x̀i , t

) t

Di

, 1 ≤ j ≤ N (24)

In the following step, we use Eqs. (22)–(24) for finding the two energies
E(De, p, x̀i , t) and E(De,

pc

(1+c) , x̀i , t) which are respectively the energies at the
right and left-hand faces of the trap. Thus, using Eq. (24), we may rewrite Eqs. (22)
and (23) as follows(

E(De,
pc

(1+c) , x̀i , t)t − DeB
(

pc

(1+c) , De

)
ρ2(De,

pc

(1+c) , x̀i , t)
)

· (E(De, p, x̀i , t)t − DeB(p, Di )ρ2(Di, p, x̀i , t))(
E(De,

pc

(1+c) , x̀i , t)t − DeB
(

pc

(1+c) , Di

)
ρ2(Di,

pc

(1+c) , x̀i , t)
)

· (E(De, p, x̀i , t)t − DeB(p, De)ρ2(De, p, x̀i , t))

=
A

(
pc

(1+c) , De

)
A(p, De)

cos(κp)

(
E(De,

pc

(1+c) , x̀i , t)t − DeA
(

pc

(1+c) , De

)
α(De,

pc

(1+c) , x̀i , t)
)

· (E(De, p, x̀i , t)t − DeA(p, Di )α(Di, p, x̀i , t))(
E(De,

pc

(1+c) , x̀i , t)t − DeA
(

pc

(1+c) , Di

)
α(Di,

pc

(1+c) , x̀i , t)
)

· (E(De, p, x̀i , t)t − DeA(p, De)α(De, p, x̀i , t))
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=
B

(
pc

(1+c) , De

)
B(p, De)

cos(κp)

The two quadratic Eqs. (25) and (26) were simultaneously solved in Appendix
B for the energies E(De, p, x̀i , t) and E(De,

pc

(1+c) , x̀i , t) and two separate solutions
were found for each (see Eqs. (B.6)–(B.9) in Appendix B). For E(De, p, x̀i , t) we
find the two solutions of

E+(De, p, x̀i , t) = t(X1X4 − X5)Y3 − (X1X2X4 − X3X5)Y1

(tX3 − tX1X2)Y1 − t2(1 − X1)Y3
(27)

E−(De, p, x̀i , t) = Y2

Y1
(28)

And for E(De,
pc

(1+c) , x̀i , t), we find the two solutions of

E+
(

De,
pc

(1 + c)
, x̀i , t

)
= Y3

Y1
(29)

E−
(

De,
pc

(1 + c)
, x̀i , t

)
(30)

= (X3 − X1X2)((tX3 − tX1X2)Y2 + (X1X2X4 − X3X5)Y1) − (1 − X1)(t2(X3 − X1X2)(Y4 − Y5) + t(X1X2X4 − X3X5)Y3)

(X3 − X1X2)((t2(1 − X1)Y2 + t(X1X4 − X5)Y1) − (1 − X1)(t3(1 − X1)(Y4 − Y5) + t2(X1X4 − X5)Y3)
,

where the quantities X1, X2, X3, X4, X5 and Y1, Y2, Y3, Y4, Y5 are given
respectively by Eqs. (B.1) and (B.4) in Appendix B. The energies E+(De, p, x̀i , t)
and E−(De, p, x̀i , t) from Eqs. (27)–(28) are for the right-hand side of the trap

and the energies E+
(
De,

pc

(1+c) , x̀i , t
)

and E−
(
De,

pc

(1+c) , x̀i , t
)

from Eqs. (29)

and (30) are for the left-hand side of it.
In the former expressions of the energies, the variable x̀i must coincide

with either pc

(1+c) or p. Thus, when x̀i = pc

(1+c) one have to discard the solu-
tions E−(De,

pc

(1+c) ,
pc

(1+c) , t) and E−(De, p,
pc

(1+c) , t) since in this case one ob-
tains from Eq. (5) and from Eq. (B.1) in Appendix B X2 = X3 = 0. In this case,
the energy E−(De,

pc

(1+c) ,
pc

(1+c) , t) from Eq. (30) vanishes whereas the energy

E−(De, p,
pc

(1+c) , t) from Eq. (28) remains at the value of Y2
Y1

. This implied the un-
reasonable conclusion that the passing particles have no energies at the left-hand
face of the trap before they diffuse through it whereas at the right-hand face of
it they have nonvanishing unaccountable energies. Thus, for x̀i = pc

(1+c) only the
energies E+(De, p,

pc

(1+c) , t) and E+(De,
pc

(1+c) ,
pc

(1+c) , t) must be considered and
they are given by

E+(De, p,
pc

(1 + c)
, t) = (X1X4 − X5)

t(X1 − 1)
(31)

E+(De,
pc

(1 + c)
,

pc

(1 + c)
, t) = Y3

Y1
(32)
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The second case is that of x̀i = p for which one obtains from Eq. (5) and from
Eq. (B.1) in Appendix B, X4 = X5 = 0. In this case the energy E+(De, p, p, t)
from Eq. (27) vanishes whereas the energy E+(De,

pc

(1+c) , p, t) from Eq. (29)

remains in the value of Y3
Y1

. This also could not be accepted since it implied that the
particles suddenly stop diffusing after the first trap whereas we are concerned with
the diffusion along the entire multitrap system. Thus, the energies E+(De, p, p, t)
and E+(De,

pc

(1+c) , p, t) must be discarded and we have to take into account only
the energies E−(De, p, p, t) and E−(De,

pc

(1+c) , p, t) which are given by

E−(De,
pc

(1 + c)
, p, t) = (X3 − X1X2)

t(1 − X1)
(33)

E−(De, p, p, t) = Y2

Y1
(34)

If c becomes very large so that c � 1 one may realize from Eqs. (B.1) in Ap-
pendix B and Eq. (5), (31) and (33) that the energies E+(De, p,

pc

(1+c) , t) and
E−(De,

pc

(1+c) , p, t) tend to zero.

4. CALCULATION OF THE ENERGIES (31)–(34) FOR SPECIFIC
VALUES OF κ P .

The expressions (31)–(34) for the energies E+(De, p,
pc

(1+c) , t),
E+(De,

pc

(1+c) ,
pc

(1+c) , t), E−(De,
pc

(1+c) , p, t), E−(De, p, p, t) should now be
evaluated as functions of κp as done for the quantum Kronig–Penney system
(Merzbacher, 1961; Tannoudji et al., 1977; Kittel, 1986). But before doing that
we show that the expressions (31)–(34) become simplified for certain values of
κp. Thus, for κp = π

2 + nπ, n = 0, 1, 2, . . . one have cos(κp) = 0 and from
(B.4) and the first of Eqs. (B.1) in Appendix B, we have Y5 = X1 = 0 and also the
second terms of Y1, Y2 and Y3 vanish as well. Thus, the energies Eqs. (31)–(34)
become

E+
(cos(κp)=0)(De, p,

pc

(1 + c)
, t) = X5

t
=

DeB(p,Di)ρ2(Di, p,
pc

(1+c) , t)

t
, (35)

E+
(cos(κp)=0)(De,

pc

(1 + c)
,

pc

(1 + c)
, t) =

DeA
(

pc

(1+c) ,De

)
α

(
De,

pc

(1+c) ,
pc

(1+c) , t
)

t

=
DeA

(
pc

(1+c) ,De

)
t

· exp(k2Det)erf c(k
√

Det), (36)
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E−
(cos(κp)=0)(De,

pc

(1 + c)
, p, t) = X3

t
=

DeB
(

pc

(1+c) ,De

)
ρ2(De,

pc

(1+c) , p, t)

t
,

(37)

E−
(cos(κp)=0)(De, p, p, t) = DeA(p,Di)α(Di, p, p, t)

t

= DeA(p,Di)

t
· exp(k2Dit)erf c(k

√
Dit) (38)

For obtaining Eqs. (35) and (37), we use the fifth and third of Eq. (B.1), respectively
in Appendix B and for (36) and (38) we use the third and second Eqs. of (B.4),
respectively in Appendix B. Use is also made of Eq. (A.5) in Appendix A and the
first equation of (B.4) in Appendix B.

Other kind of points which draw special attention is κp =
arc

(
cos

(
A(p,De)

A( pc

(1+c) ,De)

))
for which one obtains from the first of Eqs. (B.1) in

Appendix B X1 = 1. At these points, the energies E+(
De, p,

pc

(1+c) , t
)

and
E−(De,

pc

(1+c) , p, t) from Eqs. (31) and (33) must be discarded since they tend
to infinity and this cannot be accepted on physical grounds. Note that using the
transfer matrix method one may conclude that the ideal traps coefficients always
satisfy B(x̀right

j ,De) > B(x̀ left
j ,De) and so the division B(p,De)

B
(

pc

(1+c) ,De

) is greater than

unity which implies that the quantity Y1, as defined by the first of Eqs. (B.4) in Ap-
pendix B, is always positive. This determines, as will be shown, the values and the
graphical form of the energies E+(De,

pc

(1+c) ,
pc

(1+c) , t) and E−(De, p, p, t) from
(32) and (34). As seen, each of the four figures is composed of four parts which
are denoted (in text and captions) by (a), (b), (c), (d) (in the figures themselves
they are denoted as (1), (2), (3), (4)).

5. THE ENERGIES AS FUNCTIONS OF κ p, c, k, AND t .

As seen from Eqs. (B.1) and (B.4) in Appendix B, Eq. (A.5) in Appendix
A and from (5) and (6) the energies (31)–(34) critically depend upon the ratio
c, the trapping rate k and the time t . Also, one may conclude from the analytical
form of the expressions Eqs. (31)–(34) and from the parts of Figures 1–4 that the
energy E+(De, p,

pc

(1+c) , t) from Eq. (31) corresponds to E−(De,
pc

(1+c) , p, t) from
Eq. (33) and E+(De,

pc

(1+c) ,
pc

(1+c) , t) from (32) corresponds to E−(De, p, p, t) from
(34). That is, E+(De, p,

pc

(1+c) , t) and E−(De,
pc

(1+c) , p, t) are expressed only by the
ideal trap expressions from Eq. (B.1) in Appendix B and E+(De,

pc

(1+c) ,
pc

(1+c) , t) and
E−(De, p, p, t) are given only by the imperfect trap expressions from (B.4) of Ap-
pendix B. The corresponding energies E+(De, p,

pc

(1+c) , t) and E−(De,
pc

(1+c) , p, t)
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Fig. 1. Parts (a) and (b) show the energies E−(De,
pc

(1+c) , p, t) and E+(De, p,
pc

(1+c) , t) as functions
of κp, respectively for the 20 values of the ratio c = 0.1 + n · 0.4, n = 0, 1, 2, . . . 19; (c) and (d)
show a high resolution of the respective neighborhoods (a) and (b) just to the right of the point
κp = 0. Note that although (a) and (b) as well as (c) and (d) are similar in form they greatly differ
in the nonzero values of their energies. Both the trapping rate k and the time t have the values of
k = t = 2 for all the graphs of the four parts. The units of the energies are in ergs.

as functions of κp are characterized with a behavior which causes them to abruptly
change their values in a rather jumpy and discontinuous way (see, for example,
the parts of Figures 1–2. As one may assume these abrupt changes in the energies
(31) and (33) are related to the values of κp for which (X1) in their denominator
is close to 1. Note that the nonzero values of these energies may be negative in
which case they cannot represent real energies since we discuss here only kinetic
energies as realized from Eq. (18). The second corresponding pair of energies
E+(De,

pc

(1+c) ,
pc

(1+c) , t) and E−(De, p, p, t) are characterized as steeply increas-
ing with κp for very small values of it and at κp ≈ 0.05 they become constant
(as functions of κp) for all κp > 0.05 (see, for example, the parts of Figures 3–4
Also, in contrast to the former pair, these energies are always positive.

From the parts of Figures 1–4, one may realize that, for the same val-
ues of c, k and t , the nonzero values of the energy E−(De,

pc

(1+c) , p, t) are
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generally greater by several orders of magnitude from the other three ener-
gies (see for example, Fig. 4(a), (b), which show a giant difference of 1044

between E−(De,
pc

(1+c) , p, t) and E+(De, p,
pc

(1+c) , t)) Thus, although, as men-
tioned, the energies E−(De, p, p, t) and E−(De,

pc

(1+c) , p, t) correspond in ana-
lytical expressions and graphical form as functions of κp to the respective en-
ergies E+(De,

pc

(1+c) ,
pc

(1+c) , t) and E+(De, p,
pc

(1+c) , t) they greatly differ in value.
This may be seen Fig. 1(a) (b) which show the energies E−(De,

pc

(1+c) , p, t) and
E+(De, p,

pc

(1+c) , t) as functions of κp respectively, using the same 20 different
values of the ratio c for each part and the same t and k for all the graphs shown.
The 20 values of c are c = 0.1 + n · 0.4, n = 0, 1, 2, . . . 19 and the values of t

and k for all the graphs shown in the two parts are t = k = 2. Note that although
the energies shown in Fig. 1(a) (b) look similar as functions of κp, the nonzero
values of these energies differ by as much as 104. As mentioned, we should con-
sider only the zero or the positive parts of the graphs as representing real kinetic
energy.

In Fig. 1(c) and (d), we show enlarged views of the small sections in the
respective (a) and (b) parts just to the right of the point κp = 0. Note the similarity
between these energies even at this small resolution and also note that despite
this similarity the nonzero parts of the energy as shown in Fig. 1(c) are about
0.5 · 104 erg whereas those of Fig. 1(d) are about 0.4 erg. The largest hooked
negative graph corresponds to the smallest value of c and as c increases the
other hooked positive and negative graphs are added. The larger the c becomes
in Fig. 1(c) and (d), the corresponding energies become smaller and tend to be
densely arrayed around zero. This means that the larger is the interval between the
traps compared to their width the kinetic energy of the diffusing particles tends to
decrease to zero.

The same similarity in graphical form and same large differences in values
may be shown for the same energies from Fig. 1, as functions of κp, but now
for different values of the trapping rate k. This is seen in Fig. 2(a) and (b),
which show the energies E−(De,

pc

(1+c) , p, t) and E+(De, p,
pc

(1+c) , t) as functions
of κp, respectively using the same 20 different values of k for each part and
the same t and c for all the graphs shown. The 20 values of k for each part are
k = 0.1 + n · 0.4, n = 1, 2, . . . 19 and the values of t and c for all the graphs in
the two parts are t = 2 and c = 1. As for Fig. 1(a) and (b), the differences between
the nonzero parts of these energies amount to about 104 although they look similar
in external form. Note that actually the energy as shown in Fig. 2(b) tends to zero.
Fig. 2(c) and (d) show enlarged views of the respective neighborhoods (a) and (b)
about the point κp = 25, respectively. One may note the similarity between these
energies even at this small resolution. Also, one may note that despite this apparent
similarity, the nonzero parts of the energy in Fig. 2(c) is about 104 whereas the
corresponding ones in Fig. 2(d) tend to zero.
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Fig. 2. Parts (a) and (b) show the energies E−(De,
pc

(1+c) , p, t) and E+(De, p,
pc

(1+c) , t) as
functions of κp, respectively for the 20 values of the trapping rate k = 0.1 + n · 0.4, n =
0, 1, 2, . . . 19; (c) and (d) show a high resolution of the respective neighborhoods in (a) and (b)
of the point κp = 25. As is the case for Fig. 1, one may note that although (a) (b) and also (c) (d)
are very similar in form, nevertheless they greatly differ in the nonzero values of their energies.
The ratio c and the time t have the respective values of c = 1 and t = 2 for all the graphs of the
four parts. The energies are in units of ergs.

For Fig. 2(c) and (d), the graphs with the large dense hooked positive parts
correspond to the smallest values of k which means, as one may assume, that the
smaller is the trapping rate of the traps the larger is the energy of the diffusing
particles. As k increases, the corresponding graphs become negative and they tend
to zero for large enough k. That is, the more the k grows, which means that
the larger the trapping rate of the trap, the more restrained and blocked become
the diffusing particles in their passage through it. This is demonstrated through
the vanishing of the positive allowed parts of the energies for the large k and their
tendency to the zero value.

In the parts of Figures 1–2, we compare for different values of c and k the two
corresponding energies E−(De,

pc

(1+c) , p, t) and E+(De, p,
pc

(1+c) , t) as functions
of κp. We now discuss the second pair of corresponding energies E−(De, p, p, t)
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and E+(De,
pc

(1+c) ,
pc

(1+c) , t). Compared to the energies E−(De,
pc

(1+c) , p, t) and
E+(De, p,

pc

(1+c) , t) from Figs. 1 and 2, the energies E−(De, p, p, t) and
E+(De,

pc

(1+c) ,
pc

(1+c) , t) are always positive and they are generally constant with
κp. Figure 3(a) and (b) show the three-dimensional surfaces of the energies
E−(De, p, p, t) and E+(De,

pc

(1+c) ,
pc

(1+c) , t) as functions of κp and c, respectively
and for the values of k = t = 2. Note that the energy E+(De,

pc

(1+c) ,
pc

(1+c) , t) as
shown in Fig. 3(b) does not depend at all on either κp or c and has the rather small
constant value of 0.088 erg. The energy E−(De, p, p, t) at Fig. 3(a) is constant
for all κp’s and depends only slightly on c as seen from the small depression
of the surface at small c which causes it to be slightly distorted from the planar
form of Fig. 3(b). Figure 3(c) and (d) show three-dimensional surfaces of the same
energies from (a) and (b), respectively but now as functions of κp and k and for the
values c = 1 and t = 2. Note that these energies, as in (a) and (b), do not depend
on κp and vary with k to the maxima (for c = 1) of E−

max(De, p, p, t) = 15 erg and
E+

max(De,
pc

(1+c) ,
pc

(1+c) , t) = 0.23 erg. Note also that as the trapping rate k grows,
the energies E−(De, p, p, t) and E+(De,

pc

(1+c) ,
pc

(1+c) , t) decrease in value and be-
come zero at the respective values of k ≈ 4.8 and k ≈ 6.3. This result is expected
because as the trapping rate grows the traps become more effective in blocking
the diffusing particles.

As seen from the parts of Figures 1–3, the diffusing particles energy con-
siderably changes by merely passing through the trap. Thus, referring to the pair
E−(De,

pc

(1+c) , p, t), E−(De, p, p, t) one may realize the large change in kinetic
energy the diffusing particles goes through upon passing from the left-hand side
to the right-hand side of the trap. For example, comparing Fig. 1(a), which shows
the energy E−(De,

pc

(1+c) , p, t) at the left-hand side of the trap to Fig. 3(a), which
shows the energy E−(De, p, p, t) at the right-hand side of this trap for the same
values of c, k and t , one may realize that the particle’s nonzero values of the energy
changes upon diffusing through the trap from E ≈ 104 erg to E ≈ 1 erg. These
large differences may be realized again by comparing Fig. 2(a), which shows the
energy E−(De,

pc

(1+c) , p, t) at the left-hand side of the trap to Fig. 3(c), which
shows the energy E−(De, p, p, t) at the right-hand side of it for the same values
of k, c and t . As seen, the particle’s nonzero values of the energy decreases upon
passage of the trap from E ≈ 104 to E ≈ 15. Thus, one may conclude that by
diffusing through the traps, the particles lose a huge amount of the energy they
possess before the diffusion.

The time evolutions of the energies from Eqs.(31)–(34) as functions of κp

reveal in a more pronounced way the mentioned large differences in the nonzero
values of the energies. This is demonstrated in Fig. 4(a) and (b), which show the
energies E−(De,

pc

(1+c) , p, t) and E+(De, p,
pc

(1+c) , t) for the 60 different values of
t = 1 + n · 0.5, n = 1, 2, . . . 59 in each part and for c = 2 and k = 1 for all
the graphs shown. Note the giant differences of about 1044 between the nonzero
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Fig. 3. Parts (a) and (b) show three-dimensional surfaces of the energies E−(De, p, p, t) and
E+(De,

pc
(1+c) ,

pc
(1+c) , t) as functions of κp and c and for k = t = 2, respectively. Note that the en-

ergy E+(De,
pc

(1+c) ,
pc

(1+c) , t) at (b) does not depend on either κp or c and has the constant value

of 0.088 erg. The energy E+(De, p, p, t) at (a) depends only slightly on c, is constant for all κp’s
and have a maximum value (for k = 2) of E+

max(De, p, p, t) = 1 erg; (c) and (d) respectively show
three-dimensional surfaces of the same energies from Panels 1 and 2 but now as functions of κp

and k and for c = 1 and t = 2. Note that these energies do not depend at all on κp and vary with k

to the maxima (for c = 1) of E−
max(De, p, p, t) = 15 erg and E+

max(De,
pc

(1+c) ,
pc

(1+c) , t) = 0.23 erg.

Note also that the energies E−(De, p, p, t) and E+(De,
pc

(1+c) ,
pc

(1+c) , t) drop respectively to zero at
k ≈ 4.8 and k ≈ 6.3.

values of the energies in Fig. 4(a) and (b). Continuing to increase t causes the
energy in (a) to grow (not shown) even beyond 1080 erg. Since these energies
are not physically possible, we conclude that there exist points along the κp

in which the energies E−(De,
pc

(1+c) , p, t) are not allowed for large values of
the time t . In Fig. 4(c), we show a three-dimensional surface of the energies
E−(De, p, p, t) as function of κp and the time t . Note that it is constant with κp

and decreases to zero, in contrast to the energy from (a), as t increases. Figure 4(d)
shows the energy E+(De,

pc

(1+c) ,
pc

(1+c) , t), as function of κp, for the 20 values of
t = 1 + n · 0.5, n = 0, 1, . . . 19 and for c = 2 and k = 1 for all the graphs. The
dense line just above the abscissa axis denote the higher values of t for which the
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Fig. 4. Parts (a) and (b) show the energies E−(De,
pc

(1+c) , p, t) and E+(De, p,
pc

(1+c) , t) as func-
tions of κp, respectively for the 60 values of the time t = 1 + n · 0.5, n = 0, 1, 2, . . . 59. One
may realize that as the time grows the nonzero values of the energy E−(De,

pc
(1+c) , p, t) steeply

increase. The ratio c and the trapping rate k for all the graphs of (a) and (b) are c = 2 and
k = 1. Compared to the energy from (a) which grows with t the energies E−(De, p, p, t) and
E+(De,

pc
(1+c) ,

pc
(1+c) , t) shown respectively in (c) and (d) decrease with time to zero; (d) is drawn

for the 20 values of t = 1 + n · 0.5, n = 0, 1, 2, . . . 19 and for c = 2 and k = 1. The upper
lines in (d) fit the small values of t and the lower lines fit the large values. The energies are given
in units of ergs.

constant values of the energy (as function of κp) tend, like those of Fig. 4(c), to
zero.

From the discussion thus far, one may realize that generally the nonzero
values of the energy E−(De,

pc

(1+c) , p, t) are greater by several order of magnitudes
from the other three energies as shown by comparing the parts of Figs. 1, 2 and
4. These great differences are further pronounced for increasing values of the
time as shown in Fig. 3(a). But that is no more so, when the time decreases as
turn out (not shown) when the energies were calculated at small times. Thus, for
example, decreasing the time from t ≈ 30 to t ≈ 0.2 causes the nonzero values of
the energy E−(De,

pc

(1+c) , p, t) to decrease from about 1044 erg (see Fig. 4(a)) to
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about 100 erg. Likewise, the energy E−(De, p, p, t) decreases from about 15 erg
(see Panel 3 of Fig. 3) for t = 2 to 3 erg for t = 0.2 (not shown).

6. CONCLUDING REMARKS

We have discussed, using the transfer matrix method, the energy of the
particles which diffuse through the unbounded one-dimensional multitrap system.
The classical initial and boundary value problem related to diffusion through an
imperfect trap was adapted to apply to an infinite array of similar traps as done
in the sets (1)–(3). Following the conventional transfer matrix procedure, which
is used for discussing the quantum Kronig–Penney multibarrier array, we obtain a
similar matrix equation ( Eq. (8)) which relates the imperfect traps across the whole
array. Using, as for the analogous quantum multibarrier system, the periodicity
of the array we obtain a quadratic characteristic equation Eq. (11) for the two-
dimensional matrix which relates the two faces of the general j th trap. We solve
this equation for the involved eigenvalues of this matrix and impose upon them the
finitness condition at the limit at which the number N of barriers becomes very
large. As a result, two inequalities (16) and (17) are obtained which are the central
expressions from which we derive the appropriate kinetic energies of the diffusing
particles. Writing the matrix components T11( pc

(1+c) , p) and T22( pc

(1+c) , p) in these
inequalities in terms of the appropriate energies (see Eqs. (15)–(23) and discussion
there) and using the properties of the transfer matrix method (see Eqs. (18), (21)
and (24)) we obtain two simultaneous equations involving two energies. We have
found that each of these two energies is composed of two parts; one is related
to the left-hand face of the trap and the second to its right-hand face. It is also
found that the two parts of each of the two energies differ greatly from each
other not only in value but also in the way they are expressed as functions of the
related variables c, k, t and κp. That is, as seen from (31)–(34) one part of each
of these two energies is expressed in ideal trap terms only and the second part
in imperfect trap terms only. These differences entail the results that by merely
diffusing through the trap the particle’s energy totally changes as realized from
the appended figures. Moreover, there exist great variations not only between the
two parts of the same energy but also between different sections (along the κp

axis) of the same part itself. For example, in the respective Panels 1 of Figs. 1,
2 and 4 we have found that the energy E−(De, x̀

left
j , p, t) at the left-hand face

of the trap assumes values which greatly varies even in very short ranges of
κp.

As discussed in Section IV the points along the κp axis at which the energies
may assume unexpected, or even disallowed values, are related to the following two

kinds of points; (1) κp = π
2 + nπ , n = 0, 1, 2, . . . (2) κp = arc(cos(

A(x̀right
j ,De)

A(x̀left
j ,De)

)).

Another important variable which entails a large changes in the values of the
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energies is the time t as realized from the Panels of the appended Figures (see,
especially, Panels 1–4 of Fig. 4). The analytical expressions obtained are corrob-
orated by the different attached figures.

As noted, the analogous discussion of the quantum Kronig–Penney multi-
barrier entails the finding of points along the corresponding κp axis at which the
energy is disallowed. Here, for the classical imperfect multitrap we have found
corresponding disallowed energies which take the form of either negative values
for the kinetic energy or of a discontinuous change of this energy from zero to
enormous positive values as in Fig. 4(a). The quantum band-gap structure found
in the Kronig–Penney multibarrier array have been turned out to have great ap-
plications in wide areas of solid state physics such as semiconductor devices
and computer chips. The striking similarity in the forms of the Schroedinger and
diffusion equations as well as the common possibility to investigate and discuss
them by the transfer matrix method may entail in the future similar successful
development for the classical diffusive systems.

A.1. THE MATRIX ELEMENTS FROM EQ.(7)

The matrix elements T11
(
x̀ left

j , x̀
right
j

)
, T12

(
x̀ left

j , x̀
right
j

)
, T21

(
x̀ left

j , x̀
right
j

)
, and

T22
(
x̀ left

j , x̀
right
j

)
of the two-dimensional matrix T (j ) from Eq. (7) are fully discussed

and derived in (Bar 2001; 2003; 2004) and are given by the following expressions

T11
(
x̀ left

j , x̀
right
j

) = α
(
De, x̀

left
j , x̀i , t

)
α
(
Di, x̀

right
j , x̀i , t

)
α
(
Di, x̀

left
j , x̀i , t

)
α
(
De, x̀

right
j , x̀i , t

) , 1 ≤ j ≤ N (A.1)

T12
(
x̀ left

j , x̀
right
j

) = 0, 1 ≤ j ≤ N (A.2)

T21
(
x̀ left

j , x̀
right
j

) = ρ0

(
η
(
Di, x̀

right
j , t

)
η
(
De, x̀

right
j , t

)
(

ξ
(
De, x̀

left
j , x̀i , t

)
η
(
Di, x̀

left
j , t

)

− α
(
De, x̀

left
j , x̀i , t

)
ξ
(
Di, x̀

left
j , x̀i , t

)
α
(
Di, x̀

left
j , x̀i , t

)
η
(
Di, x̀

left
j , t

)
))

+ α
(
De, x̀

left
j , x̀i , t

)
α
(
Di, x̀

left
j , x̀i , t

)
(

ξ
(
Di, x̀

right
j , x̀i , t

)
η
(
De, x̀

right
j , t

) (A.3)

− α
(
Di, x̀

right
j , x̀i , t

)
ξ
(
De, x̀

right
j , x̀i , t

)
α
(
De, x̀

right
j , x̀i , t

)
η
(
De, x̀

right
j , t

)
)

, 1 ≤ j ≤ N
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T22
(
x̀ left

j , x̀
right
j ) = η(De, x̀

left
j , t

)
η(Di, x̀

right
j , t)

η(Di, x̀
left
j , t)η(De, x̀

right
j , t)

, 1 ≤ j ≤ N (A.4)

The parameters α, ξ , and η are given by (we write these expression for De

and x = x̀ left
j )

α
(
De, x̀

left
j , x̀i , t

) = erf

(
(x̀ left

j − x̀i)

2
√

Det

)
+ exp(k2Det + k

(
x̀ left

j − x̀i)
) ·

· erf c(k
√

Det + (x̀ left
j − x̀i)

2
√

Det
) (A.5)

ξ
(
De, x̀

left
j , x̀i , t

) = k exp(k2Det + k
(
x̀ left

j − x̀i)
)
erf c(k

√
Det + (x̀ left

j − x̀i)

2
√

Det
)

(A.6)

η(De, x̀i , t) = − π

x̀i

e
−

(
π
x̀i

)2
Det (A.7)

Note that in Bar (2001, 2003, 2004) the variables x̀i are not subtracted from the
variables x̀j in the functions α and ξ . This is because the presence or absence of
this subtraction do not affect at all the values of the matrix elements T11 and T22

as may be realized from their definitions in Eqs. (A.1) and (A.4) in this Appendix.
Also, in (Bar 2001; 2003; 2004), we discuss the whole array of the bounded dense
multitrap in which case the variables x̀i and x̀j do not, necessarily, refer to the same
trap and so this subtraction is ignored there. Here, on the other hand, the variables
x̀i and x̀j refer to the same trap which represents the unbounded multitrap system
and so the expression (x̀j − x̀i) should not be approximated to x̀j .

APPENDIX B THE SOLUTIONS OF THE SIMULTANEOUS
EQUATIONS (25) AND (26)

We solve in this Appendix the two Eqs. (25) and (26) for the ener-
gies E(De,

pc

(1+c) , x̀i , t) and E(De, p, x̀i , t). We begin by solving Eq. (25) for
E(De,

pc

(1+c) , x̀i , t) in terms of E(De, p, x̀i , t) and then we substitute this solu-
tion in Eq. (25) and solve it for E(De, p, x̀i , t). In order not to be involved with
cumbersome expressions we define the following quantities

X1 =
A

(
pc

(1+c) ,De

)
A(p,De)

· cos(κp)
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X2 = DeB

(
pc

(1 + c)
,Di

)
ρ2

(
Di,

pc

(1 + c)
, x̀i , t

)

X3 = DeB

(
pc

(1 + c)
,De

)
ρ2

(
De,

pc

(1 + c)
, x̀i , t

)
(B.1)

X4 = DeB(p,De)ρ2(De, p, x̀i , t)

X5 = DeB(p,Di)ρ2(Di, p, x̀i , t)

Substituting the last quantities in Eq. (25) we obtain

t2(1 − X1)E

(
De,

pc

(1 + c)
, x̀i , t

)
E(De, p, x̀i , t) − t

(
E

(
De,

pc

(1 + c)
, x̀i , t

)

× (X5 − X4X1) + E(De, p, x̀i , t)(X3 − X2X1)
)

+ X3X5 − X2X4X1 = 0 (B.2)

Solving the last equation for E
(
De,

pc

(1+c) , x̀i , t
)

we obtain

E

(
De,

pc

(1 + c)
, x̀i , t

)

= X1X2(X4 − tE(De, p, x̀i , t)) − X3(X5 − tE(De, p, x̀i , t))

tX1(X4 − tE(De, p, x̀i , t)) − t(X5 − tE(De, p, x̀i , t))
(B.3)

We may now substitute the last expression for E
(
De,

pc

(1+c) , x̀i , t
)

in Eq. (26)

and solve it for E(De, p, x̀i , t). But before proceeding we define the following
quantities

Y1 = t2


 B(p,De)

B
(

pc

(1+c) , De

) − cos(κp)




Y2 = tDe


 B(p,De)

B
(

pc

(1+c) , De

)A(p,Di)α(Di, p, x̀i , t) − A(p, De)α(De, p, x̀i , t) cos(κp)




Y3 = tDe


 B(p,De)

B
(

pc

(1+c) , De

)A

(
pc

(1 + c)
, De

)
α

(
De,

pc

(1 + c)
, x̀i , t

)

− A

(
pc

(1 + c)
, Di

)
α

(
Di,

pc

(1 + c)
, x̀i , t

)
cos(κp)

)

Y4 = D2
e

B(p,De)

B
(

pc

(1+c) , De

)A(p,Di)α(Di, p, x̀i , t)A

(
pc

(1 + c)
, De

)
α

(
De,

pc

(1 + c)
, x̀i , t

)
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Y5 = D2
eA(p, De)α(De, p, x̀i , t)A

(
pc

(1 + c)
, Di

)
α

(
Di,

pc

(1 + c)
, x̀i , t

)
cos(κp)

(B.4)

Substituting Eqs. (B.3) and (B.4) in Eq. (26) and rearranging we obtain the fol-
lowing quadratic equation for E(De, p, x̀i , t)

E(De, p, x̀i , t))
2
(
(tX3 − tX1X2)Y1 − t2(1 − X1)Y3

) + E(De, p, x̀i , t) ·
{(t2(1 − X1)(Y4 − Y5) − (tX4X1 − tX5)Y3 − t(X3 − X1X2)Y2 + (X4X1X2

−X3X5)Y1} − (X4X1X2 − X3X5)Y2 + t(X4X1 − X5)(Y4 − Y5) = 0 (B.5)

The two solutions of the last quadratic equation are

E+(De, p, x̀i , t) = t(X1X4 − X5)Y3 − (X1X2X4 − X3X5)Y1

(tX3 − tX1X2)Y1 − t2(1 − X1)Y3
(B.6)

E−(De, p, x̀i , t) = (X3 − X1X2)Y2 − t(1 − X1)(Y4 − Y5)

(X3 − X1X2)Y1 − t(1 − X1)Y3
= Y2

Y1
, (B.7)

where the last result for E−(De, p, x̀i , t) is obtained by using Eq. (B.4). The two
expressions from Eqs. (B.6) and (B.7) are the energies at the Right-hand side of

the trap. The corresponding energies E±
(
De,

pc

(1+c) , x̀i , t
)

at the left-hand side of

it may be obtained from Eq. (B.3) by substituting in it for E±(De, p, x̀i , t) from

Eqs. (B.6) and (B.7). Thus, using Eq. (B.6) one may find E+
(
De,

pc

(1+c) , x̀i , t
)

as

E+
(

De,
pc

(1 + c)
, x̀i , t

)
= Y3

Y1
(B.8)

where use is made of the first and third of Eq. (B.4). The second energy

E−
(
De,

pc

(1+c) , x̀i , t
)

is obtained by substituting from Eq. (B.7) in Eq. (B.3).

E−(De,
pc

(1 + c)
, x̀i , t)

= (X3 − X1X2)((tX3 − tX1X2)Y2 + (X1X2X4 − X3X5)Y1) − (1 − X1)(t2(X3 − X1X2)(Y4 − Y5) + t(X1X2X4 − X3X5)Y3)

(X3 − X1X2)(t2(1 − X1)Y2 + t(X1X4 − X5)Y1) − (1 − X1)(t3(1 − X1)(Y4 − Y5) + t2(X1X4 − X5)Y3)
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